Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add filters








Language
Year range
1.
Chinese Journal of Oncology ; (12): 326-333, 2022.
Article in Chinese | WPRIM | ID: wpr-935216

ABSTRACT

Objective: To study the effects of dihydromyricetin (DMY) on the proliferation, apoptosis and epithelial mesenchymal transition (EMT) of esophageal squamous cell carcinoma (ESCC) cell KYSE150 and KYSE410. Methods: KYSE150 and KYSE410 cells were treated with different concentrations of DMY (0, 25, 50, 100, 150, 200 μmol/L) for 24 hours. The median inhibition concentration (IC50) values of KYSE150 and KYSE410 were detected by cell counting kit-8 (CCK-8) method. Then 0.5‰ dimethyl sulfoxide (DMSO) was used as control group, dihydromyricetin (DMY), dihydromyricetin and transforming growth factor-β1 (DMY+ TGF-β1), transforming growth factor-β1 (TGF-β1) were used as experimental group. Cell proliferation and apoptosis rates were measured by clonal formation and flow cytometry. Transwell invasion and wound healing assay were used to detect cell invasion and migration. The protein expression levels of Caspase-3, Caspase-9, Bcl-2, Bax, Smad2/3, phosphorylation-Smad2/3 (p-Smad2/3) and Vimentin were detected by western blot. Results: The IC50 values of DMY on KYSE410 and KYSE150 cells were 100.51 and 101.27 μmol/L. The clone formation numbers of KYSE150 and KYSE410 in DMY group [(0.53±0.03) and (0.31±0.03)] were lower than those in DMSO group [(1.00±0.10) and (1.00±0.05), P<0.05]. The apoptosis rates of KYSE150 and KYSE410 cells in DMY group [(1.84±0.22)% and (2.80±0.07)%] were higher than those in DMSO group [(1.00±0.18)% and (1.00±0.07)%, P<0.05]. The invasion numbers of KYSE150 and KYSE410 cells in DMY group [(0.42±0.03) and (0.29±0.05)] were lower than those in DMSO group [(1.00±0.08) and (1.00±0.05), P<0.05]. The migration rates of KYSE150 and KYSE410 cells in DMY group [(0.65±0.14)% and (0.40±0.17)%] were lower than those in DMSO group [(1.00±0.10)% and (1.00±0.08)%, P<0.05]. The clone formation numbers of KYSE150 and KYSE410 in TGF-β1 group [(1.01±0.08) and (0.99±0.25)] were higher than those in DMY+ TGF-β1 group [(0.73±0.10) and (0.58±0.05), P<0.05]. The apoptosis rates of KYSE150 and KYSE410 cells in TGF-β1 group [(0.81±0.14)% and (1.18±0.10)%] were lower than those in DMY+ TGF-β1 group [(1.38±0.22)% and (1.85±0.04)%, P<0.05]. The invasion numbers of KYSE150 and KYSE410 cells in TGF-β1 group [(1.19±0.11) and (1.39±0.11)] were higher than those in DMY+ TGF-β1 group [(0.93±0.09) and (0.93±0.05), P<0.05]. The migration rates of KYSE150 and KYSE410 cells in TGF-β1 group [(1.87±0.19)% and (1.32±0.04)%] were higher than those in DMY+ TGF-β1 group [(0.86±0.16)% and (0.77±0.12)%, P<0.05]. The protein expression levels of Bax, Caspase-3 and Caspase-9 in KYSE150 and KYSE410 cells in DMY group were higher than those in DMSO group, while the protein expression level of Bcl-2 was lower than that in DMSO group (P<0.05). The protein expression levels of p-Smad2/3, Smad2/3 and Vimentin in KYSE150 and KYSE410 cells in DMY group were lower than those in DMSO group (P<0.05). The protein expression levels of Bax, Caspase-3 and Caspase-9 in KYSE150 and KYSE410 cells in TGF-β1 group were lower than those in DMY+ TGF-β1 group, and the protein expression level of Bcl-2 was higher than that in DMY+ TGF-β1 group (P<0.05). The protein expression levels of Bax, Caspase-3 and Caspase-9 in KYSE150 and KYSE410 cells in DMY+ TGF-β1 group were lower than those in DMY group, and the protein expression level of Bcl-2 was higher than that in DMY group (P<0.05). The protein expression levels of p-Smad2/3, Smad2/3 and Vimentin in KYSE150 and KYSE410 cells in TGF-β1 group were higher than those in DMY+ TGF-β1 group (P<0.05). Conclusion: DMY can inhibit the proliferation and EMT of ESCC mediated by TGF-β1 and promote cell apoptosis.


Subject(s)
Humans , Apoptosis , Caspase 3/metabolism , Caspase 9/metabolism , Cell Line, Tumor , Cell Movement , Cell Proliferation , Dimethyl Sulfoxide/pharmacology , Epithelial-Mesenchymal Transition , Esophageal Neoplasms/metabolism , Esophageal Squamous Cell Carcinoma , Flavonols , Signal Transduction , Transforming Growth Factor beta1/pharmacology , Vimentin/metabolism , bcl-2-Associated X Protein/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL